Arbeitspapier
Let´s do it again: bagging equity premium predictors
The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the regression coefficient and positivity of the forecast. Bagging constrained estimators can have smaller asymptotic mean-squared prediction errors than forecasts from a restricted model without bagging. Monte Carlo simulations show that forecast gains can be achieved in realistic sample sizes for the stock return problem. In an empirical application using the data set of Campbell, J., and S. Thompson (2008): “Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?”, Review of Financial tudies 21, 1511-1531, we show that we can improve the forecast performance further by smoothing the restriction through bagging.
- Sprache
-
Englisch
- Erschienen in
-
Series: Texto para discussão ; No. 604
- Klassifikation
-
Wirtschaft
- Thema
-
Risikoprämie
Kapitalmarkttheorie
Prognoseverfahren
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hillebrand, Eric
Lee, Tae-hwy
Medeiros, Marcelo C.
- Ereignis
-
Veröffentlichung
- (wer)
-
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
- (wo)
-
Rio de Janeiro
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hillebrand, Eric
- Lee, Tae-hwy
- Medeiros, Marcelo C.
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
Entstanden
- 2012