Arbeitspapier

Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting

The predictability of a high-dimensional time series model in forecasting with large information sets depends not only on the stability of parameters but also depends heavily on the active covariates in the model. Since the true empirical environment can change as time goes by, the variables that function well at the present may become useless in the future. Combined with the instable parameters, finding the most active covariates in the parameter time-varying situations becomes difficult. In this paper, we aim to propose a new method, the Penalized Adaptive Method (PAM), which can adaptively detect the parameter homogeneous intervals and simultaneously select the active variables in sparse models. The newly developed method is able to identify the parameters stability at one hand and meanwhile, at the other hand, can manage of selecting the active forecasting covariates at every different time point. Comparing with the classical models, the method can be applied to high-dimensional cases with different sources of parameter changes while it steadily reduces the forecast error in high- dimensional data. In the out-of-sample bond risk premia forecasting, the Penalized Adaptive Method can reduce the forecasting error(RMSPE and MAPE) around 24% to 50% comparing with the other forecasting methods.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2019-030

Klassifikation
Wirtschaft
Thema
SCAD penalty
propagation-separation
adaptive window choice
multiplier bootstrap
bond risk premia

Ereignis
Geistige Schöpfung
(wer)
Li, Xinjue
Zboňáková, Lenka
Wang, Weining
Härdle, Wolfgang Karl
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Li, Xinjue
  • Zboňáková, Lenka
  • Wang, Weining
  • Härdle, Wolfgang Karl
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2019

Ähnliche Objekte (12)