Arbeitspapier

Cones of Cooperation for Indefinitely Repeated

A continuation probability is introduced to develop a theory of indefinitely repeated games where the extreme cases of finitely and infinitely repeated games are specific cases. The set of publicly correlated strategies (vectors) that satisfy a matrix inequality equilvalent to the one-stage-deviation principle forms a cone of cooperation. The geometry of these cones provides a means to verify intuition regarding the levels of cooperation attained when the discount parameter and continuation probability vary. A bifurcation point is identified which indicated whether or not a cooperative subgame perfect publicly correlated outcome exists for the indefinitely repeated game. When a cooperative equilibrium exists, a recursive relationship is used to construct an equilibrium strategy. New cooperative behavior is demonstrated in an indefinitely repeated game with infrequent shocks (a subsequence of the continuation probability goes to zero).

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 1136

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Jones, Michael A.
Ereignis
Veröffentlichung
(wer)
Northwestern University, Kellogg School of Management, Center for Mathematical Studies in Economics and Management Science
(wo)
Evanston, IL
(wann)
1995

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jones, Michael A.
  • Northwestern University, Kellogg School of Management, Center for Mathematical Studies in Economics and Management Science

Entstanden

  • 1995

Ähnliche Objekte (12)