Arbeitspapier

SONIC: SOcial Network with Influencers and Communities

The integration of social media characteristics into an econometric framework requires modeling a high dimensional dynamic network with dimensions of parameter Θ typically much larger than the number of observations. To cope with this problem, we introduce a new structural model — SONIC which assumes that (1) a few influencers drive the network dynamics; (2) the community structure of the network is characterized as the homogeneity of response to the specific influencer, implying their underlying similarity. An estimation procedure is proposed based on a greedy algorithm and LASSO regularization. Through theoretical study and simulations, we show that the matrix parameter can be estimated even when the observed time interval is smaller than the size of the network. Using a novel dataset retrieved from a leading social media platform– StockTwits and quantifying their opinions via natural language processing, we model the opinions network dynamics among a select group of users and further detect the latent communities. With a sparsity regularization, we can identify important nodes in the network.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2019-025

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Construction and Estimation
Behavioral Finance: Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets‡
Thema
social media
network
community
opinion mining
natural language processing

Ereignis
Geistige Schöpfung
(wer)
Chen, Cathy Yi-Hsuan
Härdle, Wolfgang Karl
Klochkov, Yegor
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Cathy Yi-Hsuan
  • Härdle, Wolfgang Karl
  • Klochkov, Yegor
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2019

Ähnliche Objekte (12)