Low rank surrogates for fuzzy‐stochastic partial differential equations

Abstract: We consider a particular fuzzy‐stochastic PDE depending on the interaction of probabilistic and non‐probabilistic (via fuzzy arithmetic in terms of possibility theory) influences. Such a combination is beneficial in an engineering context, where aleatoric and epistemic uncertainties appear simultaneously. The fuzzy‐stochastic dependence is described in a high‐dimensional parameter space, thus easily leading to an exponential complexity in practical computations. To alleviate this severe obstacle, a compressed low‐rank approximation in form of Hierarchical Tucker representation of the desired parametric quantity of interest is derived. The performance of the proposed model order reduction approach is demonstrated.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Low rank surrogates for fuzzy‐stochastic partial differential equations ; volume:19 ; number:1 ; year:2019 ; extent:2
Proceedings in applied mathematics and mechanics ; 19, Heft 1 (2019) (gesamt 2)

Creator
Gruhlke, Robert
Eigel, Martin
Moser, Dieter
Grasedyck, Lars

DOI
10.1002/pamm.201900376
URN
urn:nbn:de:101:1-2022072208181994566326
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:21 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)