Arbeitspapier

The influence function of semiparametric estimators

Often semiparametric estimators are asymptotically equivalent to a sample average. The object being averaged is referred to as the influence function. The influence function is useful in formulating primitive regularity conditions for asymptotic normality, in efficiency comparions, for bias reduction, and for analyzing robustness. We show that the influence function of a semiparametric estimator can be calculated as the limit of the Gateaux derivative of a parameter with respect to a smooth deviation as the deviation approaches a point mass. We also consider high level and primitive regularity conditions for validity of the influence function calculation. The conditions involve Frechet differentiability, nonparametric convergence rates, stochastic equicontinuity, and small bias conditions. We apply these results to examples.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP44/15

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
Fiscal Policies and Behavior of Economic Agents: Household
Time Allocation and Labor Supply
Thema
Influence function
semiparametric estimation
bias correction

Ereignis
Geistige Schöpfung
(wer)
Ichimura, Hidehiko
Newey, Whitney K.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2015

DOI
doi:10.1920/wp.cem.2015.4415
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ichimura, Hidehiko
  • Newey, Whitney K.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2015

Ähnliche Objekte (12)