Arbeitspapier

Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration

In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches and we consider both parametric and semiparametric estimation methods. The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that 1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, 2) all the estimators are fairly robust to conditionally heteroscedastic errors, 3) the local polynomial Whittle and bias reduced log-periodogram regression estimators are shown to be more robust to short-run dynamics than other semiparametric (frequency domain and wavelet) estimators and in some cases even outperform the time domain parametric methods, and 4) without sufficient trimming of scales the wavelet based estimators are heavily biased.

Sprache
Englisch

Erschienen in
Series: Queen's Economics Department Working Paper ; No. 1189

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
bias
finite sample distribution
fractional integration
maximum likelihood
Monte Carlo simulation
parametric estimation
semiparametric estimation
wavelet
Schätztheorie
Maximum-Likelihood-Methode
Monte-Carlo-Methode
Zustandsraummodell

Ereignis
Geistige Schöpfung
(wer)
Nielsen, Morten Ørregaard
Frederiksen, Per
Ereignis
Veröffentlichung
(wer)
Queen's University, Department of Economics
(wo)
Kingston (Ontario)
(wann)
2005

Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nielsen, Morten Ørregaard
  • Frederiksen, Per
  • Queen's University, Department of Economics

Entstanden

  • 2005

Ähnliche Objekte (12)