Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions

The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo–Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions ; volume:2 ; number:2 ; year:2013 ; pages:163-193
Advances in nonlinear analysis ; 2, Heft 2 (2013), 163-193

Urheber
Gerbi, Stéphane
Said-Houari, Belkacem

DOI
10.1515/anona-2012-0027
URN
urn:nbn:de:101:1-2405011738153.376466679903
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Gerbi, Stéphane
  • Said-Houari, Belkacem

Ähnliche Objekte (12)