Arbeitspapier

Time-series momentum: A Monte-Carlo approach

This paper develops a Monte-Carlo backtesting procedure for risk premia strategies and employs it to study Time-Series Momentum (TSM). Relying on time-series models, empirical residual distributions and copulas we overcome two key drawbacks of conventional backtesting procedures. We create 10,000 paths of different TSM strategies based on the S&P 500 and a cross-asset class futures portfolio. The simulations reveal a probability distribution which shows that strategies that outperform Buy-and-Hold in-sample using historical backtests may out-ofsample i) exhibit sizable tail risks ii) underperform or outperform. Our results are robust to using different time-series models, time periods, asset classes, and risk measures.

Sprache
Englisch

Erschienen in
Series: UCD Centre for Economic Research Working Paper Series ; No. WP19/06

Klassifikation
Wirtschaft
Hypothesis Testing: General
Model Evaluation, Validation, and Selection
Asset Pricing; Trading Volume; Bond Interest Rates
International Finance Forecasting and Simulation: Models and Applications
Thema
Monte-Carlo
Extreme Value Theory
Backtesting
Risk Premia
Time-Series Momentum

Ereignis
Geistige Schöpfung
(wer)
Cheng, Enoch
Struck, Clemens
Ereignis
Veröffentlichung
(wer)
University College Dublin, UCD School of Economics
(wo)
Dublin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cheng, Enoch
  • Struck, Clemens
  • University College Dublin, UCD School of Economics

Entstanden

  • 2019

Ähnliche Objekte (12)