Arbeitspapier
Time-series momentum: A Monte-Carlo approach
This paper develops a Monte-Carlo backtesting procedure for risk premia strategies and employs it to study Time-Series Momentum (TSM). Relying on time-series models, empirical residual distributions and copulas we overcome two key drawbacks of conventional backtesting procedures. We create 10,000 paths of different TSM strategies based on the S&P 500 and a cross-asset class futures portfolio. The simulations reveal a probability distribution which shows that strategies that outperform Buy-and-Hold in-sample using historical backtests may out-ofsample i) exhibit sizable tail risks ii) underperform or outperform. Our results are robust to using different time-series models, time periods, asset classes, and risk measures.
- Sprache
-
Englisch
- Erschienen in
-
Series: UCD Centre for Economic Research Working Paper Series ; No. WP19/06
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Model Evaluation, Validation, and Selection
Asset Pricing; Trading Volume; Bond Interest Rates
International Finance Forecasting and Simulation: Models and Applications
- Thema
-
Monte-Carlo
Extreme Value Theory
Backtesting
Risk Premia
Time-Series Momentum
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cheng, Enoch
Struck, Clemens
- Ereignis
-
Veröffentlichung
- (wer)
-
University College Dublin, UCD School of Economics
- (wo)
-
Dublin
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cheng, Enoch
- Struck, Clemens
- University College Dublin, UCD School of Economics
Entstanden
- 2019