Targeted design for adaptive clinical trials via semiparametric model

Abstract: Precision medicine approach that assigns treatment according to an individual’s personal (including molecular) profile is revolutionizing health care. Existing statistical methods for clinical trial design typically assume a known model to estimate characteristics of treatment outcomes, which may yield biased results if the true model deviates far from the assumed one. This article aims to achieve model robustness in a phase II multi-stage adaptive clinical trial design. We propose and study a semiparametric regression mixture model in which the mixing proportions are specified according to the subjects’ profiles, and each sub-group distribution is only assumed to be unimodal for robustness. The regression parameters and the error density functions are estimated by semiparametric maximum likelihood and isotonic regression estimators. The asymptotic properties of the estimates are studied. Simulation studies are conducted to evaluate the performance of the method after a real data analysis.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Targeted design for adaptive clinical trials via semiparametric model ; volume:17 ; number:2 ; year:2020 ; pages:177-190 ; extent:14
The international journal of biostatistics ; 17, Heft 2 (2020), 177-190 (gesamt 14)

Urheber
Zhang, Hongbin
Yuan, Ao
Tan, Ming T.

DOI
10.1515/ijb-2018-0100
URN
urn:nbn:de:101:1-2502181234441.077424419316
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, Hongbin
  • Yuan, Ao
  • Tan, Ming T.

Ähnliche Objekte (12)