Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates

Abstract: Topological states have been widely investigated in different types of systems and lattices. In the present work, we report on topological edge states in double-wave (DW) chains, which can be described by a generalized Aubry-André-Harper (AAH) model. For the specific system of a driven-dissipative exciton polariton system we show that in such potential chains, different types of edge states can form. For resonant optical excitation, we further find that the optical nonlinearity leads to a multistability of different edge states. This includes topologically protected edge states evolved directly from individual linear eigenstates as well as additional edge states that originate from nonlinearity-induced localization of bulk states. Extending the system into two dimensions (2D) by stacking horizontal DW chains in the vertical direction, we also create 2D multi-wave lattices. In such 2D lattices multiple Su–Schrieffer–Heeger (SSH) chains appear along the vertical direction. The combination of DW chains in the horizonal and SSH chains in the vertical direction then results in the formation of higher-order topological insulator corner states. Multistable corner states emerge in the nonlinear regime.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Topological edge and corner states in coupled wave lattices in nonlinear polariton condensates ; volume:13 ; number:4 ; year:2024 ; pages:509-518 ; extent:10
Nanophotonics ; 13, Heft 4 (2024), 509-518 (gesamt 10)

Creator
Schneider, Tobias
Gao, Wenlong
Zentgraf, Thomas
Schumacher, Stefan
Ma, Xuekai

DOI
10.1515/nanoph-2023-0556
URN
urn:nbn:de:101:1-2024022013375545061860
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:52 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Schneider, Tobias
  • Gao, Wenlong
  • Zentgraf, Thomas
  • Schumacher, Stefan
  • Ma, Xuekai

Other Objects (12)