Feedback-controlled solute transport through chemo-responsive polymer membranes

Abstract: Polymer membranes are typically assumed to be inert and nonresponsive to the flux and density of the permeating particles in transport processes. Here, we theoretically study the consequences of membrane responsiveness and feedback on the steady-state force–flux relations and membrane permeability using a nonlinear-feedback solution–diffusion model of transport through a slab-like membrane. Therein, the solute concentration inside the membrane depends on the bulk concentration, c0, the driving force, f, and the polymer volume fraction, ϕ. In our model, the solute accumulation in the membrane causes a sigmoidal volume phase transition of the polymer, changing its permeability, which, in return, affects the membrane’s solute uptake. This feedback leads to nonlinear force–flux relations, j(f), which we quantify in terms of the system’s differential permeability, PΔsys∝dj/df⁠. We find that the membrane feedback can increase or decrease the solute flux by orders of magnitude, triggered by a small change in the driving force and largely tunable by attractive vs repulsive solute–membrane interactions. Moreover, controlling the inputs, c0 and f, can lead to the steady-state bistability of ϕ and hysteresis in the force–flux relations. This work advocates that the fine-tuning of the membrane’s chemo-responsiveness will enhance the nonlinear transport control features, providing great potential for future (self-)regulating membrane devices

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
The journal of chemical physics. - 158, 10 (2023) , 104903, ISSN: 1089-7690

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator

DOI
10.1063/5.0135707
URN
urn:nbn:de:bsz:25-freidok-2396365
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:56 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)