Analytic and Bootstrap Confidence Intervals for the Common-Language Effect Size Estimate
Abstract: Evaluating how an effect-size estimate performs between two continuous variables based on the common-language effect size (CLES) has received increasing attention. While Blomqvist (1950; https://doi.org/10.1214/aoms/1177729754) developed a parametric estimator (q') for the CLES, there has been limited progress in further refining CLES. This study: a) extends Blomqvist’s work by providing a mathematical foundation for Bp (a non-parametric version of CLES) and an analytic approach for estimating its standard error; and b) evaluates the performance of the analytic and bootstrap confidence intervals (CIs) for Bp. The simulation shows that the bootstrap bias-corrected-and-accelerated interval (BCaI) has the best protected Type 1 error rate with a slight compromise in Power, whereas the analytic-t CI has the highest overall Power but with a Type 1 error slightly larger than the nominal value. This study also uses a real-world data-set to demonstrate the applicability of the CLES in measu.... https://meth.psychopen.eu/index.php/meth/article/view/4495
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Analytic and Bootstrap Confidence Intervals for the Common-Language Effect Size Estimate ; volume:17 ; number:1 ; day:31 ; month:03 ; year:2021
Methodology ; 17, Heft 1 (31.03.2021)
- Urheber
-
Li, Johnson Ching-Hong
Tze, Virginia Man Chung
- DOI
-
10.5964/meth.4495
- URN
-
urn:nbn:de:101:1-2021050105091385441612
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:46 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Li, Johnson Ching-Hong
- Tze, Virginia Man Chung