Artikel

Linear stochastic models in discrete and continuous time

The econometric data to which autoregressive moving-average models are commonly applied are liable to contain elements from a limited range of frequencies. If the data do not cover the full Nyquist frequency range of [0,π] radians, then severe biases can occur in estimating their parameters. The recourse should be to reconstitute the underlying continuous data trajectory and to resample it at an appropriate lesser rate. The trajectory can be derived by associating sinc fuction kernels to the data points. This suggests a model for the underlying processes. The paper describes frequency-limited linear stochastic differential equations that conform to such a model, and it compares them with equations of a model that is assumed to be driven by a white-noise process of unbounded frequencies. The means of estimating models of both varieties are described.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 3 ; Pages: 1-22 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
autoregressive moving-average models
frequency-limited processes
linear sochastic differential equations
Nyquist-Shannon sampling therorem

Ereignis
Geistige Schöpfung
(wer)
Pollock, David Stephen G.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/econometrics8030035
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Pollock, David Stephen G.
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)