Long-time asymptotic behavior for the Hermitian symmetric space derivative nonlinear Schrödinger equation

Abstract: Resorting to the spectral analysis of the 4 × 4 matrix spectral problem, we construct a 4 × 4 matrix Riemann–Hilbert problem to solve the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation. The nonlinear steepest decent method is extended to study the 4 × 4 matrix Riemann–Hilbert problem, from which the various Deift–Zhou contour deformations and the motivation behind them are given. Through some proper transformations between the corresponding Riemann–Hilbert problems, the basic Riemann–Hilbert problem is reduced to a model Riemann–Hilbert problem, by which the long-time asymptotic behavior to the solution of the initial value problem for the Hermitian symmetric space derivative nonlinear Schrödinger equation is obtained with the help of the asymptotic expansion of the parabolic cylinder function and strict error estimates.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Long-time asymptotic behavior for the Hermitian symmetric space derivative nonlinear Schrödinger equation ; volume:24 ; number:4 ; year:2024 ; pages:819-856 ; extent:38
Advanced nonlinear studies ; 24, Heft 4 (2024), 819-856 (gesamt 38)

Creator
Chen, Mingming
Geng, Xianguo
Liu, Huan

DOI
10.1515/ans-2023-0145
URN
urn:nbn:de:101:1-2410041543167.461671700798
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Chen, Mingming
  • Geng, Xianguo
  • Liu, Huan

Other Objects (12)