Arbeitspapier
Modeling multiplicative interaction effects in Gaussian structured additive regression models
Gaussian Structured Additive Regression provides a flexible framework for additive decomposition of the expected value with nonlinear covariate effects and time trends, unit- or cluster-specific heterogeneity, spatial heterogeneity, and complex interactions between covariates of different types. Within this framework, we present a simultaneous estimation approach for highly complex multiplicative interaction effects. In particular, a possibly nonlinear function f(z) of a covariate z may be scaled by a multiplicative effect of the form exp(˜η), where ˜η is another possibly structured additive predictor. Inference is fully Bayesian and based on highly efficient Markov Chain Monte Carlo (MCMC) algorithms. We investigate the statistical properties of our approach in extensive simulation experiments. Furthermore, we apply and illustrate the methodology to an analysis of asking prices for 200000 dwellings in Germany.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers in Economics and Statistics ; No. 2024-01
- Klassifikation
-
Wirtschaft
- Thema
-
IWLS proposals
MCMC
multiplicative interaction effects
structured additive predictor
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Aschersleben, Philipp
Granna, Julian
Kneib, Thomas
Lang, Stefan
Umlauf, Nikolaus
Steiner, Winfried J.
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
- (wo)
-
Innsbruck
- (wann)
-
2024
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Aschersleben, Philipp
- Granna, Julian
- Kneib, Thomas
- Lang, Stefan
- Umlauf, Nikolaus
- Steiner, Winfried J.
- University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
Entstanden
- 2024