Arbeitspapier

Variable selection and inference for multi-period forecasting problems

This paper conducts a broad-based comparison of iterated and direct multi-step forecasting approaches applied to both univariate and multivariate models. Theoretical results and Monte Carlo simulations suggest that iterated forecasts dominate direct forecasts when estimation error is a first-order concern, i.e. in small samples and for long forecast horizons. Conversely, direct forecasts may dominate in the presence of dynamic model misspecification. Empirical analysis of the set of 170 variables studied by Marcellino, Stock and Watson (2006) shows that multivariate information, introduced through a parsimonious factor-augmented vector autoregression approach, improves forecasting performance for many variables, particularly at short horizons.

Language
Englisch

Bibliographic citation
Series: CESifo Working Paper ; No. 2543

Classification
Wirtschaft
Subject
Zeitreihenanalyse
Prognoseverfahren
Autokorrelation
Faktorenanalyse
Multivariate Analyse
Monte-Carlo-Methode
Theorie
Schätzung
Konjunktur
USA

Event
Geistige Schöpfung
(who)
Pesaran, Mohammad Hashem
Pick, Andreas
Timmermann, Allan
Event
Veröffentlichung
(who)
Center for Economic Studies and ifo Institute (CESifo)
(where)
Munich
(when)
2009

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Pesaran, Mohammad Hashem
  • Pick, Andreas
  • Timmermann, Allan
  • Center for Economic Studies and ifo Institute (CESifo)

Time of origin

  • 2009

Other Objects (12)