A random forest model to assess snow instability from simulated snow stratigraphy

Abstract P unstable N = 121) with high reliability (accuracy 88 %, precision 96 %, recall 85 %) using manually predefined weak layers. Model performance was even higher (accuracy 93 %, precision 96 %, recall 92 %), when the weakest layers of the profiles were identified with the maximum of P unstable. Finally, we compared model predictions to observed avalanche activity in the region of Davos for five winter seasons. Of the 252 avalanche days (345 non-avalanche days), 69 % (75 %) were classified correctly. Overall, the results of our RF classification are very encouraging, suggesting it could be of great value for operational avalanche forecasting.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A random forest model to assess snow instability from simulated snow stratigraphy ; volume:16 ; number:11 ; year:2022 ; pages:4593-4615 ; extent:23
The Cryosphere ; 16, Heft 11 (2022), 4593-4615 (gesamt 23)

Creator
Mayer, Stephanie
van Herwijnen, Alec
Techel, Frank
Schweizer, Jürg

DOI
10.5194/tc-16-4593-2022
URN
urn:nbn:de:101:1-2022111004354715912250
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)