A random forest model to assess snow instability from simulated snow stratigraphy
Abstract P unstable N = 121) with high reliability (accuracy 88 %, precision 96 %, recall 85 %) using manually predefined weak layers. Model performance was even higher (accuracy 93 %, precision 96 %, recall 92 %), when the weakest layers of the profiles were identified with the maximum of P unstable. Finally, we compared model predictions to observed avalanche activity in the region of Davos for five winter seasons. Of the 252 avalanche days (345 non-avalanche days), 69 % (75 %) were classified correctly. Overall, the results of our RF classification are very encouraging, suggesting it could be of great value for operational avalanche forecasting.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
A random forest model to assess snow instability from simulated snow stratigraphy ; volume:16 ; number:11 ; year:2022 ; pages:4593-4615 ; extent:23
The Cryosphere ; 16, Heft 11 (2022), 4593-4615 (gesamt 23)
- Creator
- DOI
-
10.5194/tc-16-4593-2022
- URN
-
urn:nbn:de:101:1-2022111004354715912250
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:20 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Mayer, Stephanie
- van Herwijnen, Alec
- Techel, Frank
- Schweizer, Jürg