Artikel
Learning with minimal information in continuous games
While payoff-based learning models are almost exclusively devised for finite action games, where players can test every action, it is harder to design such learning processes for continuous games. We construct a stochastic learning rule, designed for games with continuous action sets, which requires no sophistication from the players and is simple to implement: players update their actions according to variations in own payoff between current and previous action. We then analyze its behavior in several classes of continuous games and show that convergence to a stable Nash equilibrium is guaranteed in all games with strategic complements as well as in concave games, while convergence to Nash occurs in all locally ordinal potential games as soon as Nash equilibria are isolated.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 15 ; Year: 2020 ; Issue: 4 ; Pages: 1471-1508 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Noncooperative Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
- Thema
-
Payoff-based learning
continuous games
stochastic approximation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Bervoets, Sebastian
Bravo, Mario
Faure, Mathieu
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2020
- DOI
-
doi:10.3982/TE3435
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Bervoets, Sebastian
- Bravo, Mario
- Faure, Mathieu
- The Econometric Society
Entstanden
- 2020