Artikel

Learning with minimal information in continuous games

While payoff-based learning models are almost exclusively devised for finite action games, where players can test every action, it is harder to design such learning processes for continuous games. We construct a stochastic learning rule, designed for games with continuous action sets, which requires no sophistication from the players and is simple to implement: players update their actions according to variations in own payoff between current and previous action. We then analyze its behavior in several classes of continuous games and show that convergence to a stable Nash equilibrium is guaranteed in all games with strategic complements as well as in concave games, while convergence to Nash occurs in all locally ordinal potential games as soon as Nash equilibria are isolated.

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 15 ; Year: 2020 ; Issue: 4 ; Pages: 1471-1508 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Noncooperative Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
Payoff-based learning
continuous games
stochastic approximation

Ereignis
Geistige Schöpfung
(wer)
Bervoets, Sebastian
Bravo, Mario
Faure, Mathieu
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2020

DOI
doi:10.3982/TE3435
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Bervoets, Sebastian
  • Bravo, Mario
  • Faure, Mathieu
  • The Econometric Society

Entstanden

  • 2020

Ähnliche Objekte (12)