Artikel

The effect of COVID-19 on cryptocurrencies and the stock market volatility: A two-stage DCC-EGARCH model analysis

This research examines the correlations between the return volatility of cryptocurrencies, global stock market indices, and the spillover effects of the COVID-19 pandemic. For this purpose, we employed a two-stage multivariate volatility exponential GARCH (EGARCH) model with an integrated dynamic conditional correlation (DCC) approach to measure the impact on the financial portfolio returns from 2019 to 2020. Moreover, we used value-at-risk (VaR) and value-at-risk measurements based on the Cornish-Fisher expansion (CFVaR). The empirical results show significant long- and short-term spillover effects. The two-stage multivariate EGARCH model's results show that the conditional volatilities of both asset portfolios surge more after positive news and respond well to previous shocks. As a result, financial assets have low unconditional volatility and the lowest risk when there are no external interruptions. Despite the financial assets' sensitivity to shocks, they exhibit some resistance to fluctuations in market confidence. The VaR performance comparison results with the assets portfolios differ. During the COVID-19 outbreak, the Dow (DJI) index reports VaR's highest loss, followed by the S&P500. Conversely, the CFVaR reports negative risk results for the entire cryptocurrency portfolio during the pandemic, except for the Ethereum (ETH).

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 16 ; Year: 2023 ; Issue: 1 ; Pages: 1-17

Klassifikation
Management
Thema
volatility
stock market indices
spillover effects
stock return
EGARCH
Cornish-Fisher expansion
COVID-19 outbreak
cryptocurrencies return
DCC-GARCH
value-at-risk (VaR)

Ereignis
Geistige Schöpfung
(wer)
Ampountolas, Apostolos
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2023

DOI
doi:10.3390/jrfm16010025
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ampountolas, Apostolos
  • MDPI

Entstanden

  • 2023

Ähnliche Objekte (12)