Buchbeitrag

Modelling Cultural and Socio-Economic Dimensions of Political Bias in German Tweets

We introduce a new bi-dimensional classification scheme for political bias. In particular, we collaborate with political scientists and identify two important aspects: cultural and socioeconomic positions. Using a dataset of tweets by German politicians, we show that the new scheme draws more distinctive boundaries that are easier to model for machine learning classifiers (F1 scores: 0.92 and 0.86), compared to one-dimensional approaches. We investigate the validity by applying the new classifiers to the whole dataset, including previously unseen data from other parties. Additional experiments highlight the importance of dataset size and balance, as well as the superior performance of transformer language models as opposed to older methods. Finally, an extensive error analysis confirms our hypothesis that lexical overlap, in combination with high attention values, is a reliable empirical predictor of misclassification for political bias.

Sprache
Englisch

Erschienen in
In: Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022) ; Year: 2022 ; Pages: 29-40 ; Ed(s).: Schaefer, Robin ; Bai, Xiaoyu ; Stede, Manfred ; Zesch, Torsten ; Potsdam: KONVENS 2022 Organizers

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Anegundi, Aishwarya
Schulz, Konstantin
Rauh, Christian
Rehm, Georg
Ereignis
Veröffentlichung
(wer)
KONVENS 2022 Organizers
(wo)
Potsdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Buchbeitrag

Beteiligte

  • Anegundi, Aishwarya
  • Schulz, Konstantin
  • Rauh, Christian
  • Rehm, Georg
  • KONVENS 2022 Organizers

Entstanden

  • 2022

Ähnliche Objekte (12)