Arbeitspapier

Analysis of Stochastic Matching Markets

Suppose that the agents of a matching market contact each other randomly and form new pairs if is in their interest. Does such a process always converge to a stable matching if one exists? If so, how quickly? Are some stable matchings more likely to be obtained by this process than others? In this paper we are going to provide answers to these and similar questions, posed by economists and computer scientists. In the first part of the paper we give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al. which implies that the corresponding stochastic processes are absorbing Markov chains. Our proof is not only shorter, but also provides upper bounds for the number of steps needed to stabilise the system. The second part of the paper proposes new techniques to analyse the behaviour of matching markets. We introduce the Stable Marriage and Stable Roommates Automaton and show how the probabilistic model checking tool PRISM may be used to predict the outcomes of stochastic interactions between myopic agents. In particular, we demonstrate how one can calculate the probabilities of reaching different matchings in a decentralised market and determine the expected convergence time of the stochastic process concerned. We illustrate the usage of this technique by studying some well-known marriage and roommates instances and randomly generated instances.

ISBN
978-615-5024-69-6
Sprache
Englisch

Erschienen in
Series: IEHAS Discussion Papers ; No. MT-DP - 2011/32

Klassifikation
Wirtschaft
Existence and Stability Conditions of Equilibrium
Computational Techniques; Simulation Modeling
Cooperative Games
Bargaining Theory; Matching Theory
Thema
roommates problem
marriage problem
stochastic processes
core convergence
probabilistic model checking
Matching
Stochastischer Prozess
Theorie

Ereignis
Geistige Schöpfung
(wer)
Biró, Péter
Norman, Gethin
Ereignis
Veröffentlichung
(wer)
Hungarian Academy of Sciences, Institute of Economics
(wo)
Budapest
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Biró, Péter
  • Norman, Gethin
  • Hungarian Academy of Sciences, Institute of Economics

Entstanden

  • 2011

Ähnliche Objekte (12)