Arbeitspapier

Stable project allocation under distributional constraints

In a two-sided matching market when agents on both sides have preferences the stability of the solution is typically the most important requirement. However, we may also face some distributional constraints with regard to the minimum number of assignees or the distribution of the assignees according to their types. These two kind of requirements can be challenging to reconcile in practice. In this paper we describe two real applications, a project allocation problem and a workshop assignment problem, both involving some distributional constraints. We used integer programming techniques to find reasonably good solutions with regard to the stability and the distributional constraints. Our approach can be useful in a variety of different applications, such as resident allocation with lower quotas, controlled school choice or college admissions with addirmative action.

ISBN
978-615-5754-26-5
Sprache
Englisch

Erschienen in
Series: IEHAS Discussion Papers ; No. MT-DP - 2017/33

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
Thema
stable matching
two-sided markets
project allocation
linear programming
multi-criteria decision making

Ereignis
Geistige Schöpfung
(wer)
Ágoston, Kolos Csaba
Biró, Péter
Szántó, Richárd
Ereignis
Veröffentlichung
(wer)
Hungarian Academy of Sciences, Institute of Economics
(wo)
Budapest
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Ágoston, Kolos Csaba
  • Biró, Péter
  • Szántó, Richárd
  • Hungarian Academy of Sciences, Institute of Economics

Entstanden

  • 2017

Ähnliche Objekte (12)