Artikel

Stable project allocation under distributional constraints

In a two-sided matching market when agents on both sides have preferences the stability of the solution is typically the most important requirement. However, we may also face some distributional constraints with regard to the minimum number of assignees or the distribution of the assignees according to their types. These two requirements can be challenging to reconcile in practice. In this paper we describe two real applications, a project allocation problem and a workshop assignment problem, both involving some distributional constraints. We used integer programming techniques to find reasonably good solutions with regard to the stability and the distributional constraints. Our approach can be useful in a variety of different applications, such as resident allocation with lower quotas, controlled school choice or college admissions with affirmative action.

Sprache
Englisch

Erschienen in
Journal: Operations Research Perspectives ; ISSN: 2214-7160 ; Volume: 5 ; Year: 2018 ; Pages: 59-68 ; Amsterdam: Elsevier

Klassifikation
Wirtschaft
Thema
Assignment
Stable matching
Two-sided markets
Project allocation
Integer linear programming

Ereignis
Geistige Schöpfung
(wer)
Ágoston, Kolos Csaba
Biró, Péter
Szántó, Richárd
Ereignis
Veröffentlichung
(wer)
Elsevier
(wo)
Amsterdam
(wann)
2018

DOI
doi:10.1016/j.orp.2018.01.003
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ágoston, Kolos Csaba
  • Biró, Péter
  • Szántó, Richárd
  • Elsevier

Entstanden

  • 2018

Ähnliche Objekte (12)