Konferenzbeitrag

Case-Based Belief Formation under Ambiguity

In this paper, we consider a decision-maker who tries to learn the distribution of outcomes from previously observed cases. For each observed database of cases the decision-maker predicts a set of priors expressing his beliefs about the underlying probability distribution. We impose a version of the concatenation axiom introduced in BILLOT, GILBOA, SAMET, AND SCHMEIDLER (2005) which ensures that the sets of priors can be represented as a weighted sum of the observed frequencies of cases. The weights are the uniquely determined similarities between the observed cases and the case under investigation. The predicted probabilities, however, may vary with the number of observations. This generalisation of BILLOT, GILBOA, SAMET, AND SCHMEIDLER (2005) allows one to model learning processes.

Language
Englisch

Bibliographic citation
Series: Beiträge zur Jahrestagung des Vereins für Socialpolitik 2010: Ökonomie der Familie - Session: Asymmetric Information and Incentives ; No. A8-V3

Classification
Wirtschaft
Criteria for Decision-Making under Risk and Uncertainty
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Information, Knowledge, and Uncertainty: General
Subject
case-based decision theory
ambiguity
multiple priors
learning
similarity

Event
Geistige Schöpfung
(who)
Eichberger, Jürgen
Guerdjikova, Ani
Event
Veröffentlichung
(who)
Verein für Socialpolitik
(where)
Frankfurt a. M.
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Konferenzbeitrag

Associated

  • Eichberger, Jürgen
  • Guerdjikova, Ani
  • Verein für Socialpolitik

Time of origin

  • 2010

Other Objects (12)