Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations
Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations ; volume:3 ; year:2022 ; pages:1-4 ; extent:4
AGILE: GIScience series ; 3 (2022), 1-4 (gesamt 4)
- Creator
- DOI
-
10.5194/agile-giss-3-23-2022
- URN
-
urn:nbn:de:101:1-2022061605304705914328
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:32 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bates, Jordan
- Jonard, Francois
- Bajracharya, Rajina
- Vereecken, Harry
- Montzka, Carsten