Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations

Abstract. Biomass is an important indicator in the ecological and management process that can now be estimated at higher temporal and spatial resolutions because of unmanned aircraft systems (UAS). LiDAR sensor technology has advanced enabling more compact sizes that can be integrated with UAS platforms. Its signals are capable of penetrating through vegetation canopies enabling the capture of more information along the plant structure. Separate studies have used LiDAR for crop height, rate of canopy penetrations as related to leaf area index (LAI), and signal intensity as an indicator of plant chlorophyll status or green area index (GAI). These LiDAR products are combined within a machine learning method such as an artificial neural network (ANN) to assess the potential in making accurate biomass estimations for winter wheat.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Machine Learning with UAS LiDAR for Winter Wheat Biomass Estimations ; volume:3 ; year:2022 ; pages:1-4 ; extent:4
AGILE: GIScience series ; 3 (2022), 1-4 (gesamt 4)

Urheber
Bates, Jordan
Jonard, Francois
Bajracharya, Rajina
Vereecken, Harry
Montzka, Carsten

DOI
10.5194/agile-giss-3-23-2022
URN
urn:nbn:de:101:1-2022061605304705914328
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)