Artikel

Reliability and accuracy of alternative default prediction models: Evidence from Slovakia

The aim of this paper is to assess the reliability of alternative default prediction models in local conditions, with subsequent comparison with other generally known and globally disseminated default prediction models, such as Altman's Z-score, Quick Test, Creditworthiness Index, and Taffler's Model. The comparison was carried out on a sample of 90 companies operating in the Slovak Republic over a period of 3 years (2016, 2017, and 2018) with a narrower focus on three sectors: construction, retail, and tourism, using alternative default prediction models, such as CH-index, G-index, Binkert's Model, HGN2 Model, M-model, Gulka's Model, Hurtoésová's Model, Model of Delina and Packová, and Binkert's Model. To verify the reliability of these models, tests of the significance of statistical hypotheses were used, such as type I and type II error. According to research results, the highest reliability and accuracy was achieved by an alternative local Model of Delina and Packová. The least reliable results within the list of models were reported by the most globally disseminated model, Altman's Z-score. Significant differences between sectors were identified.

Sprache
Englisch

Erschienen in
Journal: International Journal of Financial Studies ; ISSN: 2227-7072 ; Volume: 9 ; Year: 2021 ; Issue: 4 ; Pages: 1-33 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
credit risk
default models
error rate
financial distress
financial health
reliability

Ereignis
Geistige Schöpfung
(wer)
Rybárová, Daniela
Majdúchová, Helena
Štetka, Peter
Luščíková, Darina
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2021

DOI
doi:10.3390/ijfs9040065
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Rybárová, Daniela
  • Majdúchová, Helena
  • Štetka, Peter
  • Luščíková, Darina
  • MDPI

Entstanden

  • 2021

Ähnliche Objekte (12)