Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters

Abstract Soil water drainage is the main source of groundwater recharge and river flow. It is therefore a key process for water resource management. In this study, we evaluate the soil hydrology and the soil water drainage, simulated by the interactions between soil–biosphere–atmosphere (ISBA) land surface model currently used for hydrological applications from the watershed scale to the global scale, where parameters are generally not calibrated. This evaluation is done using seven lysimeters from two long-term model approach sites measuring hourly water dynamics between 2009 and 2019 in northeastern France. These 2 m depth lysimeters are filled with different soil types and are either maintained as bare soil or covered with vegetation. Four closed-form equations describing soil water retention and hydraulic conductivity functions are tested, namely the commonly used equations from and, a combination of the soil water retention function with the unsaturated hydraulic conductivity function, and, for the very first time in a land surface model (LSM), a modified version of the equations, with a new hydraulic conductivity curve proposed by. The results indicate good performance by ISBA with the different closure equations in terms of soil volumetric water content and water mass. The drained flow at the bottom of the lysimeter is well simulated, using, while some weaknesses appear with due to the abrupt shape near the saturation of its hydraulic conductivity function. The mixed form or the new hydraulic conductivity function from allows the solving of this problem and even improves the simulation of the drainage dynamic, especially for intense drainage events. The study also highlights the importance of the vertical heterogeneity of the soil hydrodynamic parameters to correctly simulate the drainage dynamic, in addition to the primary influence of the parameters characterizing the shape of the soil water retention function.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters ; volume:27 ; number:13 ; year:2023 ; pages:2437-2461 ; extent:25
Hydrology and earth system sciences ; 27, Heft 13 (2023), 2437-2461 (gesamt 25)

Creator
Sobaga, Antoine
Decharme, Bertrand
Habets, Florence
Delire, Christine
Enjelvin, Noële
Redon, Paul-Olivier
Faure-Catteloin, Pierre
Le Moigne, Patrick

DOI
10.5194/hess-27-2437-2023
URN
urn:nbn:de:101:1-2023070604162438180006
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:59 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Sobaga, Antoine
  • Decharme, Bertrand
  • Habets, Florence
  • Delire, Christine
  • Enjelvin, Noële
  • Redon, Paul-Olivier
  • Faure-Catteloin, Pierre
  • Le Moigne, Patrick

Other Objects (12)