Graphene at Liquid Copper Catalysts: Atomic‐Scale Agreement of Experimental and First‐Principles Adsorption Height
Abstract: Liquid metal catalysts have recently attracted attention for synthesizing high‐quality 2D materials facilitated via the catalysts’ perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic‐level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 Å between experiment and theory. The results are obtained via in situ synchrotron X‐ray reflectivity (XRR) measurements over wide‐range q‐vectors and large‐scale molecular dynamics simulations based on efficient machine‐learning (ML) potentials trained to first‐principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu (111). Transporting the predictive first‐principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Graphene at Liquid Copper Catalysts: Atomic‐Scale Agreement of Experimental and First‐Principles Adsorption Height ; day:09 ; month:11 ; year:2022 ; extent:9
Advanced science ; (09.11.2022) (gesamt 9)
- Urheber
-
Gao, Hao
Belova, Valentina
La Porta, Francesco
Cingolani, Juan Santiago
Andersen, Mie
Saedi, Mehdi
Konovalov, Oleg V.
Jankowski, Maciej
Heenen, Hendrik H.
Groot, Irene M. N.
Renaud, Gilles
Reuter, Karsten
- DOI
-
10.1002/advs.202204684
- URN
-
urn:nbn:de:101:1-2022111014224265957210
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:34 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Gao, Hao
- Belova, Valentina
- La Porta, Francesco
- Cingolani, Juan Santiago
- Andersen, Mie
- Saedi, Mehdi
- Konovalov, Oleg V.
- Jankowski, Maciej
- Heenen, Hendrik H.
- Groot, Irene M. N.
- Renaud, Gilles
- Reuter, Karsten