Plant‐Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers

Abstract: The tissue composition and microstructures of plants have dynamic morphologies that change according to their environments. Recently, multifunctional responsive materials and smart structures also took inspiration from these plants' features. Dionaea muscipula leaves provide a remarkable example of an optimized structure that, owing to the synergistic integration of bistability, material, and geometrical properties, permits to overcome the performance limits of purely diffusive processes. In this paper, a hygroscopic bistable structure (HBS) inspired by the Venus flytrap leaves is presented, obtained by bonding prestretched poly (dimethylsiloxane) (PDMS) layers prior to depositing electrospun polyethylene oxide (PEO) nanofibers. A hygroresponsive bilayer (HBL) is also obtained by electrospinning of PEO on an unstretched PDMS layer. The hygroscopic material (Young's modulus and hygroscopic expansion) is mechanically characterized so as to predict the response time of a bending HBL in response to a step humidity variation. The HBS response time (≈1 s) is sensibly lower than the one of purely diffusive HBL (≈10 s) thanks to bistability. An illustrative implementation is also presented, exploiting an HBS to trigger the curvature of a PDMS optical focusing system. The developed plant‐inspired soft bistable structure can also be used for sensing (e.g., humidity), energy harvesting, as well as advanced soft robotics applications.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Plant‐Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers ; volume:7 ; number:4 ; year:2020 ; extent:8
Advanced materials interfaces ; 7, Heft 4 (2020) (gesamt 8)

Creator
Lunni, Dario
Cianchetti, Matteo
Filippeschi, Carlo
Sinibaldi, Edoardo
Mazzolai, Barbara

DOI
10.1002/admi.201901310
URN
urn:nbn:de:101:1-2022052912264999355322
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lunni, Dario
  • Cianchetti, Matteo
  • Filippeschi, Carlo
  • Sinibaldi, Edoardo
  • Mazzolai, Barbara

Other Objects (12)