Artikel

Routing optimization of fourth party logistics with reliability constraints based on Messy GA

Purpose: The purpose of this paper is to choose a optimal routing in fourth party logistics (4PL) with the objective of transportation cost minimization under reliability level constraint. Design/methodology/approach: Reliability theory is applied to routing optimization problem. A mathematical model of the 4PL routing optimization problem with reliability constraints is built, which aims to find a route at the minimum cost. Due to the 4PL routing problem is NP-hard, two algorithms are designed: Messy Genetic Algorithm (Messy GA) and Enumeration Algorithm (EA). Findings: Through the model and algorithm, 4PL company can obtain the optimal solution quickly and effectively, according to customer's reliability requirements. Practical implications : We give an example for test the effectiveness of the method and the algorithm. Originality/value: In this paper, we put objective factors that cause disturbances of transportation time into consideration, and reliability theory is applied to 4PL routing optimization problem. A Messy GA with double arrays encoding method is designed to solve the problem.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering and Management (JIEM) ; ISSN: 2013-0953 ; Volume: 7 ; Year: 2014 ; Issue: 5 ; Pages: 1097-1111 ; Barcelona: OmniaScience

Klassifikation
Management
Thema
fourth party logistics
reliability constraints
routing optimization
Messy Genetic Algorithm
Enumeration Algorithm

Ereignis
Geistige Schöpfung
(wer)
Li, Jia
Yanqiu, Liu
Zhongjun, Hu
Ereignis
Veröffentlichung
(wer)
OmniaScience
(wo)
Barcelona
(wann)
2014

DOI
doi:10.3926/jiem.1126
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Li, Jia
  • Yanqiu, Liu
  • Zhongjun, Hu
  • OmniaScience

Entstanden

  • 2014

Ähnliche Objekte (12)