Arbeitspapier

Easy bootstrap-like estimation of asymptotic variances

The bootstrap is a convenient tool for calculating standard errors of the parameter estimates of complicated econometric models. Unfortunately, the bootstrap can be very time-consuming. In a recent paper, Honoré and Hu (2017), we propose a "Poor (Wo)man's Bootstrap" based on one-dimensional estimators. In this paper, we propose a modified, simpler method and illustrate its potential for estimating asymptotic variances.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 2018-11

Classification
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Methodological Issues: General
Statistical Simulation Methods: General
Subject
standard error
bootstrap
inference
censored regression
two-step estimation

Event
Geistige Schöpfung
(who)
Honoré, Bo E.
Hu, Luojia
Event
Veröffentlichung
(who)
Federal Reserve Bank of Chicago
(where)
Chicago, IL
(when)
2018

DOI
doi:10.21033/wp-2018-11
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Honoré, Bo E.
  • Hu, Luojia
  • Federal Reserve Bank of Chicago

Time of origin

  • 2018

Other Objects (12)