Arbeitspapier
Monte Carlo-based tail exponent estimator
In this paper we study the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our method is not sensitive to the choice of k and works well also on small samples. The new estimator gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the main world stock market indices. On the two separate periods of 2002-2005 and 2006-2009 we estimate the tail exponent.
- Language
-
Englisch
- Bibliographic citation
-
Series: IES Working Paper ; No. 6/2010
- Classification
-
Wirtschaft
Estimation: General
Statistical Simulation Methods: General
- Subject
-
Hill estimator
α-stable distributions
tail exponent estimation
Statistische Verteilung
Schätztheorie
Monte-Carlo-Methode
- Event
-
Geistige Schöpfung
- (who)
-
Baruník, Jozef
Vácha, Lukáš
- Event
-
Veröffentlichung
- (who)
-
Charles University in Prague, Institute of Economic Studies (IES)
- (where)
-
Prague
- (when)
-
2010
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Baruník, Jozef
- Vácha, Lukáš
- Charles University in Prague, Institute of Economic Studies (IES)
Time of origin
- 2010