Arbeitspapier

Monte Carlo-based tail exponent estimator

In this paper we study the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our method is not sensitive to the choice of k and works well also on small samples. The new estimator gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the main world stock market indices. On the two separate periods of 2002-2005 and 2006-2009 we estimate the tail exponent.

Language
Englisch

Bibliographic citation
Series: IES Working Paper ; No. 6/2010

Classification
Wirtschaft
Estimation: General
Statistical Simulation Methods: General
Subject
Hill estimator
α-stable distributions
tail exponent estimation
Statistische Verteilung
Schätztheorie
Monte-Carlo-Methode

Event
Geistige Schöpfung
(who)
Baruník, Jozef
Vácha, Lukáš
Event
Veröffentlichung
(who)
Charles University in Prague, Institute of Economic Studies (IES)
(where)
Prague
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Baruník, Jozef
  • Vácha, Lukáš
  • Charles University in Prague, Institute of Economic Studies (IES)

Time of origin

  • 2010

Other Objects (12)