Artikel

Wasserstein distance bounds on the normal approximation of empirical autocovariances and cross‐covariances under non‐stationarity and stationarity

The autocovariance and cross-covariance functions naturally appear in many time series procedures (e.g. autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross-covariance are asymptotically normal with covariance structure depending on the second- and fourth-order spectra. Under non-restrictive assumptions, we derive a bound for the Wasserstein distance of the finite-sample distribution of the estimator of the autocovariance and cross-covariance to the Gaussian limit. An error of approximation to the second-order moments of the estimator and an m-dependent approximation are the key ingredients to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.

Language
Englisch

Bibliographic citation
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 45 ; Year: 2023 ; Issue: 3 ; Pages: 361-375 ; Hoboken, NJ: Wiley

Subject
Autocovariance
time series
Wasserstein distance
Stein's method

Event
Geistige Schöpfung
(who)
Anastasiou, Andreas
Kley, Tobias
Event
Veröffentlichung
(who)
Wiley
(where)
Hoboken, NJ
(when)
2023

DOI
doi:10.1111/jtsa.12716
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Anastasiou, Andreas
  • Kley, Tobias
  • Wiley

Time of origin

  • 2023

Other Objects (12)