Artikel
Wasserstein distance bounds on the normal approximation of empirical autocovariances and cross‐covariances under non‐stationarity and stationarity
The autocovariance and cross-covariance functions naturally appear in many time series procedures (e.g. autoregression or prediction). Under assumptions, empirical versions of the autocovariance and cross-covariance are asymptotically normal with covariance structure depending on the second- and fourth-order spectra. Under non-restrictive assumptions, we derive a bound for the Wasserstein distance of the finite-sample distribution of the estimator of the autocovariance and cross-covariance to the Gaussian limit. An error of approximation to the second-order moments of the estimator and an m-dependent approximation are the key ingredients to obtain the bound. As a worked example, we discuss how to compute the bound for causal autoregressive processes of order 1 with different distributions for the innovations. To assess our result, we compare our bound to Wasserstein distances obtained via simulation.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Journal of Time Series Analysis ; ISSN: 1467-9892 ; Volume: 45 ; Year: 2023 ; Issue: 3 ; Pages: 361-375 ; Hoboken, NJ: Wiley
- Subject
-
Autocovariance
time series
Wasserstein distance
Stein's method
- Event
-
Geistige Schöpfung
- (who)
-
Anastasiou, Andreas
Kley, Tobias
- Event
-
Veröffentlichung
- (who)
-
Wiley
- (where)
-
Hoboken, NJ
- (when)
-
2023
- DOI
-
doi:10.1111/jtsa.12716
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Anastasiou, Andreas
- Kley, Tobias
- Wiley
Time of origin
- 2023