Evaluation methods for low-cost particulate matter sensors

Abstract µ g  m- 3 µ g  m- 3 R 2 R 2 and root mean square error remain the dominant metrics in sensor evaluations, an alternative approach using a prediction interval may offer more consistency between evaluations and a more direct interpretation of sensor data following an evaluation. Ongoing quality assurance for sensor data is needed to ensure that data continue to meet expectations. Observations of trends in linear regression parameters and sensor bias were used to analyze calibration and other quality assurance techniques.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Evaluation methods for low-cost particulate matter sensors ; volume:14 ; number:11 ; year:2021 ; pages:7369-7379 ; extent:11
Atmospheric measurement techniques ; 14, Heft 11 (2021), 7369-7379 (gesamt 11)

Creator
Bean, Jeffrey K.

DOI
10.5194/amt-14-7369-2021
URN
urn:nbn:de:101:1-2021120204535995549389
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bean, Jeffrey K.

Other Objects (12)