Detecting treatment interference under K-nearest-neighbors interference
Abstract: We propose a model of treatment interference where the response of a unit depends only on its treatment status and the statuses of units within its K-neighborhood. Current methods for detecting interference include carefully designed randomized experiments and conditional randomization tests on a set of focal units. We give guidance on how to choose focal units under this model of interference. We then conduct a simulation study to evaluate the efficacy of existing methods for detecting network interference. We show that this choice of focal units leads to powerful tests of treatment interference that outperform current experimental methods.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Detecting treatment interference under K-nearest-neighbors interference ; volume:12 ; number:1 ; year:2024 ; extent:20
Journal of causal inference ; 12, Heft 1 (2024) (gesamt 20)
- Urheber
-
Alzubaidi, Samirah H.
Higgins, Michael J.
- DOI
-
10.1515/jci-2023-0029
- URN
-
urn:nbn:de:101:1-2406151707558.527977938106
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:47 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Alzubaidi, Samirah H.
- Higgins, Michael J.