Detecting treatment interference under K-nearest-neighbors interference

Abstract: We propose a model of treatment interference where the response of a unit depends only on its treatment status and the statuses of units within its K-neighborhood. Current methods for detecting interference include carefully designed randomized experiments and conditional randomization tests on a set of focal units. We give guidance on how to choose focal units under this model of interference. We then conduct a simulation study to evaluate the efficacy of existing methods for detecting network interference. We show that this choice of focal units leads to powerful tests of treatment interference that outperform current experimental methods.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Detecting treatment interference under K-nearest-neighbors interference ; volume:12 ; number:1 ; year:2024 ; extent:20
Journal of causal inference ; 12, Heft 1 (2024) (gesamt 20)

Urheber
Alzubaidi, Samirah H.
Higgins, Michael J.

DOI
10.1515/jci-2023-0029
URN
urn:nbn:de:101:1-2406151707558.527977938106
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:47 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Alzubaidi, Samirah H.
  • Higgins, Michael J.

Ähnliche Objekte (12)