Arbeitspapier

Smoothing parameter selection in two frameworks for penalized splines

There are two popular smoothing parameter selection methods for spline smoothing. First, criteria that approximate the average mean squared error of the estimator (e.g. generalized cross validation) are widely used. Alternatively, the maximum likelihood paradigm can be employed under the assumption that the underlying function to be estimated is a realization of some stochastic process. In this article the asymptotic properties of both smoothing parameter estimators are studied and compared in the frequentist and stochastic framework for penalized spline smoothing. Consistency and asymptotic normality of the estimators are proved and small sample properties are discussed. A simulation study and a real data example illustrate the theoretical fi ndings.

Sprache
Englisch

Erschienen in
Series: Discussion Papers ; No. 85

Klassifikation
Wirtschaft
Thema
Maximum likelihood
Mean squared error minimizer
Penalized splines
Smoothing splines

Ereignis
Geistige Schöpfung
(wer)
Krivobokova, Tatyana
Ereignis
Veröffentlichung
(wer)
Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)
(wo)
Göttingen
(wann)
2011

Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Krivobokova, Tatyana
  • Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)

Entstanden

  • 2011

Ähnliche Objekte (12)