On the Directly and Subdirectly Irreducible Many-Sorted Algebras
Abstract: A theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
On the Directly and Subdirectly Irreducible Many-Sorted Algebras ; volume:48 ; number:1 ; year:2015 ; pages:1-12 ; extent:12
Demonstratio mathematica ; 48, Heft 1 (2015), 1-12 (gesamt 12)
- Urheber
-
Climent Vidal, J.
Soliveres Tur, J.
- DOI
-
10.1515/dema-2015-0001
- URN
-
urn:nbn:de:101:1-2411181439591.679722131965
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:27 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Climent Vidal, J.
- Soliveres Tur, J.