On the Directly and Subdirectly Irreducible Many-Sorted Algebras

Abstract: A theorem of single-sorted universal algebra asserts that every finite algebra can be represented as a product of a finite family of finite directly irreducible algebras. In this article, we show that the many-sorted counterpart of the above theorem is also true, but under the condition of requiring, in the definition of directly reducible many-sorted algebra, that the supports of the factors should be included in the support of the many-sorted algebra. Moreover, we show that the theorem of Birkhoff, according to which every single-sorted algebra is isomorphic to a subdirect product of subdirectly irreducible algebras, is also true in the field of many-sorted algebras.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
On the Directly and Subdirectly Irreducible Many-Sorted Algebras ; volume:48 ; number:1 ; year:2015 ; pages:1-12 ; extent:12
Demonstratio mathematica ; 48, Heft 1 (2015), 1-12 (gesamt 12)

Urheber
Climent Vidal, J.
Soliveres Tur, J.

DOI
10.1515/dema-2015-0001
URN
urn:nbn:de:101:1-2411181439591.679722131965
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Climent Vidal, J.
  • Soliveres Tur, J.

Ähnliche Objekte (12)