AUTOMATIC TRAINING DATA GENERATION IN DEEP LEARNING-AIDED SEMANTIC SEGMENTATION OF HERITAGE BUILDINGS

Abstract. In the geomatics domain the use of deep learning, a subset of machine learning, is becoming more and more widespread. In this context, the 3D semantic segmentation of heritage point clouds presents an interesting and promising approach for modelling automation, in light of the heterogeneous nature of historical building styles and features. However, this heterogeneity also presents an obstacle in terms of generating the training data for use in deep learning, hitherto performed largely manually. The current generally low availability of labelled data also presents a motivation to aid the process of training data generation. In this paper, we propose the use of approaches based on geometric rules to automate to a certain degree this task. One object class will be discussed in this paper, namely the pillars class. Results show that the approach managed to extract pillars with satisfactory quality (98.5% of correctly detected pillars with the proposed algorithm). Tests were also performed to use the outputs in a deep learning segmentation setting, with a favourable outcome in terms of reducing the overall labelling time (−66.5%). Certain particularities were nevertheless observed, which also influence the result of the deep learning segmentation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
AUTOMATIC TRAINING DATA GENERATION IN DEEP LEARNING-AIDED SEMANTIC SEGMENTATION OF HERITAGE BUILDINGS ; volume:V-2-2022 ; year:2022 ; pages:317-324 ; extent:8
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-2-2022 (2022), 317-324 (gesamt 8)

Urheber
Murtiyoso, A.
Matrone, F.
Martini, M.
Lingua, A.
Grussenmeyer, Pierre
Pierdicca, R.

DOI
10.5194/isprs-annals-V-2-2022-317-2022
URN
urn:nbn:de:101:1-2022051905305945776746
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)