Pruning algorithms of neural networks — a comparative study
Abstract: The neural network with optimal architecture speeds up the learning process and generalizes the problem well for further knowledge extraction. As a result researchers have developed various techniques for pruning the neural networks. This paper provides a survey of existing pruning techniques that optimize the architecture of neural networks and discusses their advantages and limitations. Also the paper evaluates the effectiveness of various pruning techniques by comparing the performance of some traditional and recent pruning algorithms based on sensitivity analysis, mutual information and significance on four real datasets namely Iris, Wisconsin breast cancer, Hepatitis Domain and Pima Indian Diabetes.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Pruning algorithms of neural networks — a comparative study ; volume:3 ; number:3 ; year:2013 ; pages:105-115 ; extent:11
Open computer science ; 3, Heft 3 (2013), 105-115 (gesamt 11)
- Creator
-
Augasta, M.
Kathirvalavakumar, T.
- DOI
-
10.2478/s13537-013-0109-x
- URN
-
urn:nbn:de:101:1-2410301518427.779247332220
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 15.08.2025, 7:30 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Augasta, M.
- Kathirvalavakumar, T.