Pruning algorithms of neural networks — a comparative study

Abstract: The neural network with optimal architecture speeds up the learning process and generalizes the problem well for further knowledge extraction. As a result researchers have developed various techniques for pruning the neural networks. This paper provides a survey of existing pruning techniques that optimize the architecture of neural networks and discusses their advantages and limitations. Also the paper evaluates the effectiveness of various pruning techniques by comparing the performance of some traditional and recent pruning algorithms based on sensitivity analysis, mutual information and significance on four real datasets namely Iris, Wisconsin breast cancer, Hepatitis Domain and Pima Indian Diabetes.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Pruning algorithms of neural networks — a comparative study ; volume:3 ; number:3 ; year:2013 ; pages:105-115 ; extent:11
Open computer science ; 3, Heft 3 (2013), 105-115 (gesamt 11)

Urheber
Augasta, M.
Kathirvalavakumar, T.

DOI
10.2478/s13537-013-0109-x
URN
urn:nbn:de:101:1-2410301518427.779247332220
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Augasta, M.
  • Kathirvalavakumar, T.

Ähnliche Objekte (12)