Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies

Abstract: The number of parameters involved in lithium‐ion battery electrode manufacturing and the complexity of the physicochemical interactions throughout the associated processes make highly complex to find interdependencies between the final electrode characteristics and the fabrication parameters. In this work, we have analyzed three different machine‐learning algorithms (decision tree, support vector machine, and deep neural network) in order to find the best one to uncover the interdependencies between the slurry manufacturing parameters and the final properties of NMC‐based cathodes. The results revealed that the support vector machine method shows high accuracy and the possibility to predict the influence of manufacturing parameters on themass loading and porosity of the electrodes in a straightforward graphical way. Furthermore, we report for the first time this new approach and a case study that, by comparing the trends observed experimentally and from the model, demonstrates the validity and the quality of the proposed approach.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Artificial Intelligence Investigation of NMC Cathode Manufacturing Parameters Interdependencies ; volume:3 ; number:1 ; year:2020 ; pages:60-67 ; extent:8
Batteries & supercaps ; 3, Heft 1 (2020), 60-67 (gesamt 8)

Creator
Cunha, Ricardo Pinto
Lombardo, Teo
Primo, Emiliano N.
Franco, Alejandro A.

DOI
10.1002/batt.201900135
URN
urn:nbn:de:101:1-2022062412351378302035
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)