NERF FOR HERITAGE 3D RECONSTRUCTION

Abstract. Conventional or learning-based 3D reconstruction methods from images have clearly shown their potential for 3D heritage documentation. Nevertheless, Neural Radiance Field (NeRF) approaches are recently revolutionising the way a scene can be rendered or reconstructed in 3D from a set of oriented images. Therefore the paper wants to review some of the last NeRF methods applied to various cultural heritage datasets collected with smartphone videos, touristic approaches or reflex cameras. Firstly several NeRF methods are evaluated. It turned out that Instant-NGP and Nerfacto methods achieved the best outcomes, outperforming all other methods significantly. Successively qualitative and quantitative analyses are performed on various datasets, revealing the good performances of NeRF methods, in particular for areas with uniform texture or shining surfaces, as well as for small datasets of lost artefacts. This is for sure opening new frontiers for 3D documentation, visualization and communication purposes of digital heritage.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
NERF FOR HERITAGE 3D RECONSTRUCTION ; volume:XLVIII-M-2-2023 ; year:2023 ; pages:1051-1058 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-M-2-2023 (2023), 1051-1058 (gesamt 8)

Urheber
Mazzacca, G.
Karami, A.
Rigon, S.
Farella, E. M.
Trybala, P.
Remondino, Fabio

DOI
10.5194/isprs-archives-XLVIII-M-2-2023-1051-2023
URN
urn:nbn:de:101:1-2023062904375622547081
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:45 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)