Classification of Vaginal Cleanliness Grades through Surface‐Enhanced Raman Spectral Analysis via The Deep‐Learning Variational Autoencoder–Long Short‐Term Memory Model

In this study, it is aimed to establish a novel method based on a deep‐learning‐guided surface‐enhanced Raman spectroscopy (SERS) technique to achieve rapid and accurate classification of vaginal cleanliness levels. We proposed a variational autoencoder (VAE) approach to enhance spectral quality, coupled with a deep learning algorithm long short‐term memory (LSTM) neural network to analyze SERS spectra produced by vaginal secretions. The performance of various machine learning (ML) algorithms is assessed using multiple evaluation metrics. Finally, the reliability of the optimal model is tested using blind test data (N = 10/group for each cleanliness level). The data quality of the SERS fingerprints of four types of vaginal secretions is significantly improved after VAE decoding and reconstruction. The signal‐to‐noise ratio of the generated spectra increased from the original 2.58–11.13. Among all algorithms, the VAE–LSTM algorithm demonstrates the best prediction ability and time efficiency. Additionally, blind test datasets yielded an overall accuracy of 85%. In this study, it is concluded that the deep‐learning‐guided SERS technique holds significant potential in rapidly distinguishing between different levels of vaginal cleanliness through human vaginal secretion samples. This contributes to the efficient diagnosis of vaginal cleanliness levels in clinical settings.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Classification of Vaginal Cleanliness Grades through Surface‐Enhanced Raman Spectral Analysis via The Deep‐Learning Variational Autoencoder–Long Short‐Term Memory Model ; day:28 ; month:10 ; year:2024 ; extent:11
Advanced intelligent systems ; (28.10.2024) (gesamt 11)

Urheber
Tang, Jia‐Wei
Wen, Xin‐Ru
Chen, Hui‐Min
Chen, Jie
Hong, Kun‐Hui
Yuan, Quan
Usman, Muhammad
Wang, Liang

DOI
10.1002/aisy.202400587
URN
urn:nbn:de:101:1-2410281317070.969335803369
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Tang, Jia‐Wei
  • Wen, Xin‐Ru
  • Chen, Hui‐Min
  • Chen, Jie
  • Hong, Kun‐Hui
  • Yuan, Quan
  • Usman, Muhammad
  • Wang, Liang

Ähnliche Objekte (12)