Artikel
Bayesian bandwidth selection for a nonparametric regression model with mixed types of regressors
This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP) growth rates among the organisation for economic co-operation and development (OECD) and non-OECD countries.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 2 ; Pages: 1-27 ; Basel: MDPI
- Classification
-
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
- Subject
-
cross-validation
Nadaraya-Watson estimator
posterior predictive density
random-walk Metropolis
unknown error density
value-at-risk
- Event
-
Geistige Schöpfung
- (who)
-
Zhang, Xibin
King, Maxwell L.
Shang, Han Lin
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2016
- DOI
-
doi:10.3390/econometrics4020024
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Zhang, Xibin
- King, Maxwell L.
- Shang, Han Lin
- MDPI
Time of origin
- 2016