Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach
Abstract: Visible hyperspectral imaging (HSI) is a fast and non-invasive imaging method that has been adapted by the field of conservation science to study painted surfaces. By collecting reflectance spectra from a 2D surface, the resulting 3D hyperspectral data cube contains millions of recorded spectra. While processing such large amounts of spectra poses an analytical and computational challenge, it also opens new opportunities to apply powerful methods of multivariate analysis for data evaluation. With the intent of expanding current data treatment of hyperspectral datasets, an innovative approach for data reduction and visualization is presented in this article. It uses a statistical embedding method known as t-distributed stochastic neighbor embedding (t-SNE) to provide a non-linear representation of spectral features in a lower 2D space. The efficiency of the proposed method for painted surfaces from cultural heritage is established through the study of laboratory prepared paint mock-ups, and medieval French illuminated manuscript.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach ; volume:90 ; number:3 ; year:2018 ; pages:493-506 ; extent:14
Pure and applied chemistry ; 90, Heft 3 (2018), 493-506 (gesamt 14)
- Creator
-
Pouyet, Emeline
Rohani, Neda
Katsaggelos, Aggelos K.
Cossairt, Oliver
Walton, Marc
- DOI
-
10.1515/pac-2017-0907
- URN
-
urn:nbn:de:101:1-2024022313172751889757
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Pouyet, Emeline
- Rohani, Neda
- Katsaggelos, Aggelos K.
- Cossairt, Oliver
- Walton, Marc