Artikel

Covariate powered cross‐weighted multiple testing

A fundamental task in the analysis of data sets with many variables is screening for associations. This can be cast as a multiple testing task, where the objective is achieving high detection power while controlling type I error. We consider m hypothesis tests represented by pairs ((Pi,Xi))1≤i≤m of p‐values Pi and covariates Xi, such that Pi⊥Xi if Hi is null. Here, we show how to use information potentially available in the covariates about heterogeneities among hypotheses to increase power compared to conventional procedures that only use the Pi. To this end, we upgrade existing weighted multiple testing procedures through the independent hypothesis weighting (IHW) framework to use data‐driven weights that are calculated as a function of the covariates. Finite sample guarantees, for example false discovery rate control, are derived from cross‐weighting, a data‐splitting approach that enables learning the weight‐covariate function without overfitting as long as the hypotheses can be partitioned into independent folds, with arbitrary within‐fold dependence. IHW has increased power compared to methods that do not use covariate information. A key implication of IHW is that hypothesis rejection in common multiple testing setups should not proceed according to the ranking of the p‐values, but by an alternative ranking implied by the covariate‐weighted p‐values.

Sprache
Englisch

Erschienen in
Journal: Journal of the Royal Statistical Society: Series B (Statistical Methodology) ; ISSN: 1467-9868 ; Volume: 83 ; Year: 2021 ; Issue: 4 ; Pages: 720-751

Thema
Benjamini–Hochberg
empirical Bayes
false discovery rate
Independent Hypothesis Weighting
multiple testing
p‐value weighting

Ereignis
Geistige Schöpfung
(wer)
Ignatiadis, Nikolaos
Huber, Wolfgang
Ereignis
Veröffentlichung
(wer)
Wiley
(wo)
Hoboken, NJ
(wann)
2021

DOI
doi:10.1111/rssb.12411
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ignatiadis, Nikolaos
  • Huber, Wolfgang
  • Wiley

Entstanden

  • 2021

Ähnliche Objekte (12)