Natural Exponential and Three‐Dimensional Chaotic System

Abstract: Existing chaotic system exhibits unpredictability and nonrepeatability in a deterministic nonlinear architecture, presented as a combination of definiteness and stochasticity. However, traditional two‐dimensional chaotic systems cannot provide sufficient information in the dynamic motion and usually feature low sensitivity to initial system input, which makes them computationally prohibitive in accurate time series prediction and weak periodic component detection. Here, a natural exponential and three‐dimensional chaotic system with higher sensitivity to initial system input conditions showing astonishing extensibility in time series prediction and image processing is proposed. The chaotic performance evaluated theoretically and experimentally by Poincare mapping, bifurcation diagram, phase space reconstruction, Lyapunov exponent, and correlation dimension provides a new perspective of nonlinear physical modeling and validation. The complexity, robustness, and consistency are studied by recursive and entropy analysis and comparison. The method improves the efficiency of time series prediction, nonlinear dynamics‐related problem solving and expands the potential scope of multi‐dimensional chaotic systems.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Natural Exponential and Three‐Dimensional Chaotic System ; day:28 ; month:03 ; year:2023 ; extent:14
Advanced science ; (28.03.2023) (gesamt 14)

Urheber
Liu, Shiwei
Wang, Qiaohua
Liu, Chengkang
Sun, Yanhua
He, Lingsong

DOI
10.1002/advs.202204269
URN
urn:nbn:de:101:1-2023032915064708491500
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:44 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Liu, Shiwei
  • Wang, Qiaohua
  • Liu, Chengkang
  • Sun, Yanhua
  • He, Lingsong

Ähnliche Objekte (12)