A generalized contou-carrère symbol and its reciprocity laws in higher dimensions

Abstract: We generalize Contou-Carr`ere symbols to higher dimensions. To an (n + 1)-tuple f0, . . . , fn ∈ A((t1)) · · · ((tn))×, where A denotes an algebra over a field k, we associate an element (f0, . . . , fn) ∈ A×, extending the higher tame symbol for k = A, and earlier constructions for n = 1 by Contou-Carr`ere, and n = 2 by Osipov–Zhu. It is based on the concept of higher commutators for central extensions by spectra. Using these tools, we describe the higher Contou-Carr`ere symbol as a composition of boundary maps in algebraic K- theory, and prove a version of Parshin–Kato reciprocity for higher Contou- Carr`ere symbols

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Transactions of the American Mathematical Society. Series B. - 8, 23 (2021) , 679-753, ISSN: 2330-0000

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator

DOI
10.1090/btran/81
URN
urn:nbn:de:bsz:25-freidok-2485524
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:58 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)