A generalized contou-carrère symbol and its reciprocity laws in higher dimensions
Abstract: We generalize Contou-Carr`ere symbols to higher dimensions. To an (n + 1)-tuple f0, . . . , fn ∈ A((t1)) · · · ((tn))×, where A denotes an algebra over a field k, we associate an element (f0, . . . , fn) ∈ A×, extending the higher tame symbol for k = A, and earlier constructions for n = 1 by Contou-Carr`ere, and n = 2 by Osipov–Zhu. It is based on the concept of higher commutators for central extensions by spectra. Using these tools, we describe the higher Contou-Carr`ere symbol as a composition of boundary maps in algebraic K- theory, and prove a version of Parshin–Kato reciprocity for higher Contou- Carr`ere symbols
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Transactions of the American Mathematical Society. Series B. - 8, 23 (2021) , 679-753, ISSN: 2330-0000
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
- DOI
-
10.1090/btran/81
- URN
-
urn:nbn:de:bsz:25-freidok-2485524
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:58 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Braunling, Oliver
- Groechenig, Michael
- Wolfson, Jesse
- Universität
Entstanden
- 2024